메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Ying Shuai Quan (Hanyang University) Jin Sung Kim (Hanyang University) Chung Choo Chung (Hanyang University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
1,377 - 1,382 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we propose a Robust Model Predictive Control combined with Control Barrier Function (RMPC-CBF) for a nonholonomic robot with obstacle avoidance subject to additive input disturbances. Both Input-to-State Stability (ISS) and Input-to-State Safety (ISSf) are provided to theoretically guarantee the system’s stability and safety. CBF-based safety conditions are formulated as constraints inside a robust MPC strategy. Robust satisfaction of the constraints is ensured by tightening the state constraint set. With admissible disturbances under a certain bound, ISS and robust recursive feasibility are guaranteed by computing the terminal region and state constraint set. For obstacle avoidance, Input-to-State Safe Control Barrier Function (ISSf-CBF) is chosen to provide robust set safety for the dynamic systems under input disturbances, which always guarantees that states stay inside or close to the safe set. With the proposed method, the future state prediction is taken into consideration and optimal performance is accomplished via MPC, and the system’s safety is ensured via CBF. Numerical simulation results confirm the effectiveness and validity of the proposed approach.

목차

Abstract
1. INTRODUCTION
2. SYSTEM DYNAMICS
3. ROBUST MODEL PREDICTIVE CONTROL STRATEGY
4. INPUT-TO-STATE SAFE CONTROL BARRIER FUNCTION
5. ROBUST MPC WITH CBF CONSTRAINTS FOR OBSTACLE AVOIDANCE
6. EXPERIMENTAL RESULT
7. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0