메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Tae Hoon Oh (Seoul National University) Jong Min Lee (Seoul National University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2018
발행연도
2018.10
수록면
1,226 - 1,231 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Robust Model Predictive Control (RMPC) has been researched to overcome the problem of controlling the uncertainty. Theoretically, the algorithm with worst-case cost could successfully reject the bounded disturbance and lower the upper bound of the cost. It rarely, however, applied in industry because the algorithm deals with the scenario which has the negligible probability to occur. In this paper, the Multi-Tube MPC (MTMPC) is proposed with the notion of minimum response probability that the controller only react to the scenario which has a significant probability. In order to build those scenarios, the disturbance set was decomposed into several subsets and sub-tubes were constructed by collecting the subsets into the sequence. The parameterized tube MPC was used to evaluate each scenario and the maximization has been taken. The recursive feasibility and stability were proven and the simulation results are presented to show that the proposed method could be an effective alternative of conventional worst-case cost method.

목차

Abstract
1. INTRODUCTION
2. BRIEF REVIEW OF TUBE MPC AND MULTIPLE TUBE MODEL
3. METHOD OF SET DECOMPOSITION
4. ILLUSTRATIVE EXAMPLE
5. CONCLUSION
6. ACKNOWLEDGEMENT
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-003-003539751