메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박소진 (경남대학교) 오창규 (경남대학교)
저널정보
한국인터넷전자상거래학회 인터넷전자상거래연구 인터넷전자상거래연구 제20권 제1호
발행연도
2020.2
수록면
147 - 162 (16page)
DOI
10.37272/JIECR.2020.02.20.1.147

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
People reward themselves with self-gifting when they succeed in achieving their goals or, in contrast, comfort themselves with self-gifting when they fail in achieving their goals. This study investigates the effect of self-gifting context and the dimension of attribution on the choice of hedonic products. To achieve the research goals we select four product categories that people frequently purchase when self-gifting and makes four choice sets that consist of hedonic option and utilitarian option. We assume that the choice share of hedonic products will increase in success situation rather than in failure situation. We also suppose the interaction effect between self-gifting situation and the dimension of attribution. The scenario-based experiment results show that success situation in which people give gifts to themselves as rewards after succeeding in test has higher choice share rate of hedonic products than failure situation in which people give gifts to themselves for comfort after failing in test. In addition, research shows that the interaction effect between self-gifting situation and the dimension of attribution is significant. While the choice share rate of hedonic products increases considerably in success situation caused by people"s own effort, it deceases significantly in failure situation caused by their lack of effort (internal attribution). On the other hand, when the result is due to extrinsic circumstance (external attribution), success or failure situation has little influence on the choice share rate of hedonic products.

목차

Abstract
Ⅰ. 서론
Ⅱ. 이론적 배경과 연구가설
Ⅲ. 실증분석
Ⅳ. 결론
참고문헌

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-323-000412762