메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Injune Yeo (Gwangju Institute of Science and Technology) Byung-Geun Lee (Gwangju Institute of Science and Technology)
저널정보
대한전자공학회 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE Journal of Semiconductor Technology and Science Vol.20 No.1
발행연도
2020.2
수록면
105 - 118 (14page)
DOI
10.5573/JSTS.2020.20.1.105

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study presents a 12-bit 40 MS/s successive approximation register (SAR) analog-to-digital converter (ADC) that utilizes a digital foreground self-calibration scheme for capacitor mismatches and a low-noise dynamic comparator. To reduce hardware complexity and AD power consumption, a split-capacitor, capacitive digital-to-analog converter (CDAC) is used to generate the comparator input voltage for binary search operations at the cost of increased capacitor matching requirements. Capacitor mismatches were calibrated with the digital foreground self-calibration technique, which was modified from our previous work to be adapted for the split-capacitor CDAC. In addition, a low-noise dynamic comparator that does not need an additional circuit and conversion cycles is also presented. A prototype ADC, which occupies an active die area of 0.098 ㎟, is fabricated with a 65 nm standard CMOS process. By using the mismatch calibration scheme, the ADC achieves a spurious-free dynamic range and a signal-to-noise and distortion ratios of 79.0 dB and 67.4 dB, respectively, for a sampling rate of 40-MSample/s. The power consumption of the ADC is 1.96 mW when driven with a 1.2 V supply and the figure-of-merit is 25.58 fJ/conversion-step.

목차

Abstract
I. INTRODUCTION
II. PROPOSED CAPACITOR MISMATCH CALIBRATION TECHNIQUE
III. LOW NOISE DYNAMIC COMPARATOR
IV. CIRCUIT DESIGN
IV. PROTOTYPE DESIGN AND MEASUREMENT RESULTS
V. CONCLUSION
REFERENCES

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0