메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hamed Abbasizadeh (Sungkyunkwan University) Dong-Soo Lee (Sungkyunkwan University) Sang-Sun Yoo (Korea Advanced Institute of Science and Technology (KAIST)) Joon-Tae Kim (Konkuk University) Kang-Yoon Lee (Sungkyunkwan University)
저널정보
대한전자공학회 JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE Journal of Semiconductor Technology and Science Vol.16 No.6
발행연도
2016.12
수록면
760 - 770 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A 12-bit 750 kS/s Dual-Sampling Successive Approximation Register Analog-to-Digital Converter (SAR ADC) technique with reduced Capacitive DAC (CDAC) is presented in this paper. By adopting the Adaptive Power Control (APC) technique for the two-stage latched type comparator and using bootstrap switch, power consumption can be reduced and overall system efficiency can be optimized. Bootstrapped switches also are used to enhance the sampling linearity at a high input frequency. The proposed SAR ADC reduces the average switching energy compared with conventional SAR ADC by adopting reduced the Most Significant Bit (MSB) cycling step with Dual-Sampling of the analog signal. This technique holds the signal at both comparator input asymmetrically in sample mode. Therefore, the MSB can be calculated without consuming any switching energy. The prototype SAR ADC was implemented in 0.18-μm CMOS technology and occupies 0.728 mm2. The measurement results show the proposed ADC achieves an Effective Number-of-Bits (ENOB) of 10.73 at a sampling frequency of 750 kS/s and clock frequency of 25 MHz. It consumes only 0.13 mW from a 5.0-V supply and achieves the INL and DNL of +2.78/-2.45 LSB and +0.36/-0.73 LSB respectively, SINAD of 66.35 dB, and a Figures-of-Merit (FoM) of a 102 fJ/conversion-step.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. SAR ADC ARCHITECTURE
Ⅲ. ADC CIRCUIT IMPLEMENTATION
Ⅳ. MEASUREMENT RESULTS
Ⅴ. CONCLUSIONS
REFERENCES

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-569-001935003