메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Shengnan1 Liu (Shandong Women’s University) Xu Wang (Shandong Women’s University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.13 No.4
발행연도
2024.8
수록면
322 - 327 (6page)
DOI
10.5573/IEIESPC.2024.13.4.322

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Precise extraction of the main melody from polyphonic music is a critical challenge in vocal information processing. This paper starts with a brief introduction to extracting vocal music information features. Two distinct feature types were selected: the Mel-frequency cepstral coefficient (MFCC) and chroma. An innovative main melody extraction algorithm was then developed using a convolutional neural network (CNN) and conditional random field (CRF). The performance of the algorithm was validated on datasets. The main melody extraction effects were improved significantly using MFCC and chroma as inputs to the CNN-CRF algorithm for feature extraction. The algorithm achieved an overall accuracy (OA) of 86.72% and a voicing false alarm (VFA) of 6.84% on the ADC2004 dataset. On the MIREX05 dataset, the algorithm attained an OA and VFA of 85.21% and 11.16%, respectively. The algorithm exhibited pronounced enhancement when being tested on the MIREX05 dataset, and chroma played a notable role in enhancing the raw chroma accuracy. This algorithm also performed better than the SegNet and FTANet algorithms.

목차

Abstract
1. Introduction
2. Melody Extraction for Vocal Information
3. Results and Analysis
4. Conclusion
References

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-24-02-090252774