메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Mingfeng Yan (Putian University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.14 No.2
발행연도
2025.4
수록면
268 - 279 (12page)
DOI
10.5573/IEIESPC.2025.14.2.268

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The design of B&B space presents challenges in extracting and matching Mazu pattern elements. This study introduces an efficient approach based on the fast robust feature algorithm to address this issue. Initially, an image-aware hash model is created, incorporating the fast robust feature algorithm. Subsequently, an enhanced Siamese network model is established, integrating the fast robust feature algorithm. Results indicate that the improved fast robust feature algorithm exhibits superior robustness compared to the traditional approach, achieving a matching ratio of 0.4 to 0.6. The proposed algorithm attains 93.53% and 93.91% image retrieval accuracy on self-built and Mnist datasets, surpassing other comparison algorithms. Through grayscale histogram and perceptual hash algorithm integration, the method enhances recognition accuracy during image deformation, especially under rotation and scale changes. Although encoding times are longer at 8.12 and 5.25 seconds, respectively, the proficient handling of rotation and scale invariance remains unaffected. This study offers an effective solution for precise feature extraction in intricate patterns within B&B space design, particularly in managing image rotation and scale alterations, presenting robust technical support for image processing and pattern recognition.

목차

Abstract
1. Introduction
2. Related Works
3. Methods
4. Results and Discussion
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0