메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Shuwen Wang (Lingnan Normal University) Huiqi Cao (Lingnan Normal University) Yao Liu (Lingnan Normal University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.12 No.2
발행연도
2023.4
수록면
112 - 121 (10page)
DOI
10.5573/IEIESPC.2023.12.2.112

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Under the background of today’s intelligence, the application of intelligent images is becoming popularized, and the detection of multi-source information images is a valuable research topic. Current image detection methods are insensitive and inaccurate. Therefore, the research combines the SIFT (scale-invariant feature transform) algorithm with the Gabor features and CNN (convolutional neural network (Ed note. Acronyms only need to be defined once.)) to form an improved new algorithm. The algorithm divides the features of the image into several different categories. In each category, the features will be fully identified and extracted, and different levels of feature matching will be performed. The properties of the SIFT algorithm are used to form an operational stacking pyramid and combine the Gabor features and CNN with it. The Gabor filter is formed into a filter bank to obtain parameters, including frequency, scale, and direction in various dimensions. The results are fused to obtain a fusion Gabor descriptor. The high sensitivity of CNN to images, particularly colors, is applied to the algorithm to make monitoring the algorithm more accurate. The experimental results show that the average precision rate, average recall rate, and average precision rate of the improved algorithm are 92.35%, 74.79%, and 82.55%, respectively, which are significantly higher than the other two algorithms used for comparison. The improved algorithm shows better performance and has remarkable advantages that can be applied to the image monitoring of image information.

목차

Abstract
1. Introduction
2. Related Work
2. Application of the SIFT Algorithm Combined with Gabor Feature and CNN in Multi-source Information Image Monitoring
3. Simulation Results and Analysis under the Comparison of Three Algorithms
4. Conclusion
Reference

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0