메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Ziwei Cui (Henan Vocational University of Science and Technology)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.14 No.1
발행연도
2025.2
수록면
22 - 32 (11page)
DOI
10.5573/IEIESPC.2025.14.1.22

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Expression recognition is a crucial aspect of emotion computing research, with significant value in distance education, human-computer interaction, and medical research. This study analyzes students’ emotions on an art education platform with a focus on facial expression recognition algorithms using static images. To overcome the limitation of single facial features, a feature fusion algorithm is proposed to weigh and fuse regional features. The improved Local Binary Patterns (LBP) algorithm enhances texture feature extraction by utilizing a new threshold to describe image pixel relationships. Additionally, the Histogram of Oriented Gradients (HOG) extracts edge features from the eyebrow and mouth areas, which are then fused with the texture feature of the face using optimal weighting coefficients. The fused features are classified and recognized using Support Vector Machine (SVM) classifiers. Comparative experiments on the JAFFE and CK+ datasets demonstrated that the fusion feature-based facial expression recognition algorithm outperformed individual algorithms, achieving a recognition rate improvement of 12.7% and 13.6%, respectively. These findings offer theoretical insights and support for emotional analysis in the context of students’ art education.

목차

Abstract
1. Introduction
2. Related Work
3. Empowering Art Education Platforms for Enhanced Learning: A Fusion Approach with Improved LBP and HOG Algorithms for Expression Recognition
4. Expression Recognition Results of Fusion Features for Student Emotion Analysis on Education Platform
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-092296199