메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Heum Park (Youngsan University)
저널정보
한국정보통신학회 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING 2017 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING Vo.9 No.1
발행연도
2017.6
수록면
69 - 72 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper presents an extraction method for major adverse cardiac events (MACE) from KAMIR dataset based on deep learning algorithm. The KAMIR dataset has been under construction at 41 Primary PCI Centers in Korea since November 2005. Many studies for the KAMIR have proceeded via analysis of statistical approaches: student’s t-test, χ²-test, and multivariate logistic regression analysis, nominal Gini-Index, etc. And also, there have been a lot of studies for various area using deep learning algorithms. Unfortunately, only few studies on deep learning for nominal feature extraction have as yet been completed, and the KAMIR dataset has problems in extracting representative features remain for 1) unbalanced dataset for classes, 2) instances having almost all of the features of the datasets, and 3) instances having almost all features with non-null values. Thus, we considered deep learning algorithm for extraction of major features among 7 feature groups from KAMIR, excluded the features having null or none values. In this paper, we propose here an extraction method for major adverse cardiac events (MACE) from KAMIR dataset using deep learning algorithm. Therefore, we can have good major features of AMI patients from the KAMIR, and it can select the major features for given conditions.

목차

Abstract
I. INTRODUCTION
II. DEEP LEARNING FOR EXTRACTION OF MAJOR FEATURES
III. EXPERIMENTAL DATASET AND RESUTLS
IV. DISCUSSION AND CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0