메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jiyong Park (Kwangwoon University) Jaewon An (Kwangwoon University) Sang Ho Choi (Kwangwoon University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.12 No.1
발행연도
2023.2
수록면
30 - 37 (8page)
DOI
10.5573/IEIESPC.2023.12.1.30

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Sleep is an essential time for body recovery and healthy living. Therefore, sleep monitoring for health management is important. The gold-standard method for evaluating sleep is polysomnography (PSG), and physicians score the sleep stages using night PSG recording data. However, scoring sleep stages requires considerable time and labor. Hence, more accessible and efficient sleep-scoring methods are required. Because sleep stage information provides significant information for healthcare, studies of automatic sleep scoring have been conducted to overcome the limitations of PSG. This study reviews the progress and challenges of single- and multi-biosignalbased deep learning approaches to classify the sleep stages. In addition, non-contact sensor-based methods are reviewed for long-term monitoring at home.

목차

Abstract
1. Introduction
2. Deep Learning Architectures
3. Literature Review
4. Conclusion
References

참고문헌 (44)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-569-000401174