메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jaewoo Baek (Kwangwoon University) Suwan Baek (Kwangwoon University) HyunSu Yu (Kwangwoon University) JungHwan Lee (Kwangwoon University) Cheolsoo Park (Kwangwoon University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.10 No.6
발행연도
2021.12
수록면
464 - 468 (5page)
DOI
10.5573/IEIESPC.2021.10.6.464

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In order to measure sleep quality, sleep experts manually classify sleep stages through polysomnography (PSG) signals. However, it is time-consuming and labor-intensive work. Thus, automatic sleep stage classification methods are needed. In this study, we propose an end-to-end automatic sleep staging algorithm using a one-dimensional convolutional neural network (1DCNN) based on an inception network and bidirectional long short-term memory (bi-LSTM). First, a feature map was extracted from input data using the 1D-CNN architecture without preprocessing. Secondly, bi-LSTM learned a stage transition rule using the feature maps. In addition, we used the sleep-EDF public dataset to evaluate our model, and only one channel of EEG signal was used to save computational cost. The accuracy and macro-averaged F1 score of the classification performance were 85.05% and 79.05%, respectively. These results demonstrate state-of-the-art performance compared to previous studies using the same dataset, yielding an effective method for an automatic sleep staging algorithm.

목차

Abstract
1. Introduction
2. The Proposed Method
3. Performance Evaluation
5. Conclusion
References

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0