메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김형욱 (창원대학교) 이영록 (창원대학교) 박동규 (창원대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제22권 제12호
발행연도
2019.12
수록면
1,491 - 1,499 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Insufficient sleep time and bad sleep quality causes many illnesses and it’s research became more and more important. The most common method for measuring sleep quality is the polysomnography(PSG). The PSG is a test used to diagnose sleep disorders. The most common PSG data is obtained from the examiner, which attaches several sensors on a body and takes sleep overnight. However, most of the sleep stage classification in PSG are low accuracy of the classification. In this paper, we have studied algorithm for sleep level classification based on machine learning which can replace PSG. EEG, EOG, and EMG channel signals are studied and tested by using CNN algorithm. In order to compensate the performance, a mixed model using both CNN and DNN models is designed and tested for performance.

목차

ABSTRACT
1. 서론
2. 관련연구
3. 데이터셋
4. 신경망 알고리즘
5. 실험 결과
6. 결론 및 향후 연구과제
REFERENCE

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0