메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Samyeul Noh (Electronics and Telecommunications Research Institute) Jiyoung Park (Electronics and Telecommunications Research Institute)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2019
발행연도
2019.10
수록면
1,160 - 1,163 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Many interaction systems for at-home workouts have had much difficulty in mobility due to the fixed location of a vision sensor. In this paper, we present the utilization of a mobile robot that navigates autonomously to improve an interaction system’s mobility. The mobile robot is implemented in an open-source robot operating system called ROS to take advantage of open-source packages associated with autonomous navigation. To perform autonomous navigation and provide mobility to the system, it comprises six components: mapping, localization, occupancy grid map, global path planning, local path planning, and ROS communication. The mapping component builds a global map by simultaneous localization and mapping. The localization component estimates the mobile robot’s pose within the global map by the adaptive Monte Carlo localization approach. The occupancy grid map component builds a local map for nearby surroundings including dynamic objects. The global path planning component optimizes a route to reach a given target pose. The local path planning component generates a trajectory to reach a local goal while conducting collision avoidance and then produces control commands to follow the trajectory. Last, the ROS communication component connects the mobile robot with the system. To verify the feasibility of the system’s mobility, we have tested autonomous navigation capability for the mobile robot at the laboratory level in indoor environments.

목차

Abstract
1. INTRODUCTION
2. UTILIZATION OF MOBILE ROBOT
3. EXPERIMENTAL RESULTS
4. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0