메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Hsien-I Lin (National Taipei University of Technology) Minh Nguyen Cong (National Taipei University of Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2019
발행연도
2019.10
수록면
944 - 948 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recent decade, grasping pose perception for robot grasping field takes an important role in developing intelligent robotic applications. In this paper, we present a novel pipeline to infer grasp configuration for 3-finger gripper from point cloud data of a working environment. Most of the previous works are on 2D or 2.5D inputs to perform the 2D grasps. However, the 2D grasp configuration is not really compatible with the physical robot structure, the grasp successful rate on a robot system is only around 73% to 80%. To improve the robustness and computation, our goal is to propose an approach that can generate reliable grasping configurations in the cluster space. To accomplish this, we adopt a point cloud deep network to learn the shapes of objects and recognize their surfaces from the partial view. Afterwards, the grasp candidates are inferred based on the object models and reference grasping configuration sets. In our experiment, the proposed point cloud network had a better successful grasping rate compared to previous approaches in the context of varied and imbalanced data. And the grasping inference was highly viable in the complicated working environment.

목차

Abstract
1. INTRODUCTION
2. PROBLEM FORMULATION
3. METHOD
4. EXPERIMENTS AND RESULTS
5. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0