메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
H. Akolkar (IIT Kanpur 208016) M. F. Orlando (IIT Kanpur 208016) A. Dutta (IIT Kanpur 208016) A. Saxena (IIT Kanpur 208016) L. Behera (IIT Kanpur 208016)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS-SICE 2009
발행연도
2009.8
수록면
1,644 - 1,649 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper deals with the optimal design and control of an exoskeletal robot hand for the rehabilitation of stroke patients. First, the grasping motion data from the fingers of a normal subject was captured using a vision system. As the human finger joints cannot be modeled by single revolute joints due to changing instantaneous centre of rotation, we have used 4-bar mechanisms to model each joint. Optimal 4-bars have been designed using genetic algorithms, by minimizing the error between a coupler point and points traced by the finger links. It is shown that the designed 4-bars can accurately track the motion of the human fingers. The exoskeleton is controlled by using the EMG signals obtained from the subject’ muscles. The relation between the EMG and finger motion is first learned, using a neural net. Based on the learned parameters, the subjects EMG signal is used to control a simulation of the exoskeleton joint motion. A comparison between Recurrent Neural Network and Multi Layer Perceptron for classifying and mapping the EMG to finger position was also carried out.

목차

Abstract
1. INTRODUCTION
2. DESIGN OF OPTIMAL EXOSKELETON BASED ON 4-BAR MECHANISMS
3. CONTROL USING HAND EMG SIGNAL
4. RESULTS AND DISCUSSION
5. CONCLUSION
ACKNOWLEDGEMENT
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000765090