메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Yong-Ju Lee (Korea University) Jae-Bok Song (Korea University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS-SICE 2009
발행연도
2009.8
수록면
171 - 176 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
For successful SLAM, perception of the environment is important. This paper proposes a scheme to autonomously detect features which are used as natural landmarks for indoor SLAM. Features are roughly selected by using entropy maps which measure the level of randomness of information. The selected features are evaluated by the saliency map based on similarity maps which measure the level of similarity between the selected features and the given image. In the saliency map, it is possible to distinguish the salient features from the background. In this research, the HSV color space is adopted for color representation instead of the RGB space. The robot estimates its pose using the detected features and builds a grid map of the unknown environment using a range sensor. The feature positions are stored in the grid map. Experimental results show that the feature detection proposed in this paper can autonomously detect features in unknown environments reasonably well.

목차

Abstract
I. INTRODUCTION
II. HSV COLOR SPACE
III. ENTROPY MAPS
IV. SIMILARITY MAPS
V. SALIENCY MAP
VI. EXPERIMENTAL RESULTS
VII. CONCLUSIONS
ACKNOWLEDGMENT
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000772224