메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김나형 (가천대학교) 안종현 (가천대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제33권 제5호
발행연도
2023.10
수록면
423 - 429 (7page)
DOI
10.5391/JKIIS.2023.33.5.423

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
현재 자율주행 기술은 도심에서 다니는 일반 차량에 대하여 활발한 연구가 이루어지고 있다. 그에 반해 비포장도로의 자율주행에 대한 연구는 복잡한 지형, 불규칙한 주행조건과 같은 제약들로 인하여 더 많은 노력을 필요로 한다. 본 논문은 다양한 딥러닝 기반의 의미론적 분할 네트워크들을 활용하여 오프로드 환경에서의 주행가능 영역을 판별하고 성능을 비교한다. 기존 자율주행 연구에 활용되는 데이터셋과는 달리, 본 연구에서는 오프로드 환경을 반영한 Rellis-3D 데이터셋을 타겟으로 한다. 주어진 데이터셋에 대해 해당 모델들의 성능을 비교하고 평가하기 위해서 Intersection over Union(IoU)와 Flops Per IoU (FPI)을 평가 기준치로 사용한다. 이를 통해 오프로드 환경에서의 주행가능영역을 판별하는 데 가장 효율적인 네트워크를 선정한다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 딥러닝을 통한 의미론적 분할
4. 실험 방법
5. 평가 및 실험 결과
6. 결론 및 향후 연구
References

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0