메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Seung Kwan Kang (Seoul National University College of Medicine) Hyun Joon An (Seoul National University Hospital) 진형민 (서울대학교병원) Jung-in Kim (Seoul National University Hospital) Eui Kyu Chie (Seoul National University Hospital) Jong Min Park (Seoul National University Hospital) Jae Sung Lee (Seoul National University College of Medicine)
저널정보
대한의용생체공학회 Biomedical Engineering Letters (BMEL) Biomedical Engineering Letters (BMEL) Vol.11 No.3
발행연도
2021.8
수록면
263 - 271 (9page)
DOI
https://doi.org/10.1007/s13534-021-00195-8

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Although MR-guided radiotherapy (MRgRT) is advancing rapidly, generating accurate synthetic CT (sCT) from MRI is stillchallenging. Previous approaches using deep neural networks require large dataset of precisely co-registered CT and MRIpairs that are diffi cult to obtain due to respiration and peristalsis. Here, we propose a method to generate sCT based on deeplearning training with weakly paired CT and MR images acquired from an MRgRT system using a cycle-consistent GAN(CycleGAN) framework that allows the unpaired image-to-image translation in abdomen and thorax. Data from 90 cancerpatients who underwent MRgRT were retrospectively used. CT images of the patients were aligned to the correspondingMR images using deformable registration, and the deformed CT (dCT) and MRI pairs were used for network training andtesting. The 2.5D CycleGAN was constructed to generate sCT from the MRI input. To improve the sCT generation performance,a perceptual loss that explores the discrepancy between high-dimensional representations of images extracted froma well-trained classifi er was incorporated into the CycleGAN. The CycleGAN with perceptual loss outperformed the U-netin terms of errors and similarities between sCT and dCT, and dose estimation for treatment planning of thorax, and abdomen. The sCT generated using CycleGAN produced virtually identical dose distribution maps and dose-volume histogramscompared to dCT. CycleGAN with perceptual loss outperformed U-net in sCT generation when trained with weakly paireddCT-MRI for MRgRT. The proposed method will be useful to increase the treatment accuracy of MR-only or MR-guidedadaptive radiotherapy.

목차

등록된 정보가 없습니다.

참고문헌 (45)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0