메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이재봉 (한국교육과정평가원)
저널정보
한국과학교육학회 한국과학교육학회지 한국과학교육학회지 제42권 제6호
발행연도
2022.12
수록면
611 - 619 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
최근 교육에서 교육 데이터마이닝에 관한 관심이 높아지고 있는 시점에 과학교육에서 평가 결과를 활용하여 학생들에게 적합한 피드백을 제공하기 위해 빅데이터 분석의 적용 가능성을 탐색해 보고자 하였다. 연구에서는 국가수준 학업성취도 평가의 24문항에 응시한 2,576명의 평가 자료를 활용하여 비지도 기계학습의 한 가지 방법인 K-평균 군집분석을 이용하여 학생들을 군집화하였다. 학업성취도 평가 자료를 활용한 군집화 결과, 학생들을 6개의 군집으로 나누어 볼수 있었다. 상위권이나 하위권에 비해 중위권 학생들이 다양하게 다른 군집으로 구분됨을 알 수 있다. 군집분석의 결과를 보면, 군집화에서 가장 중요하게 영향을 주는 요인은 학업 성취였으며, 군집별로는 교육과정의 내용 영역별, 교과 역량별, 정의적 특성 면에서 서로 다른 특성을 보이고 있었다. 하위 군집에서는 정의적 영역 중에서 학습의욕이 중요하게 영향을 주고, 교과 역량 면에서는 과학적 탐구 및 문제 해결력과 과학적 의사소통 능력이 중요하게 영향을 주고 있었다. 내용 영역 면에서는 운동과 에너지와 물질 영역에 대한 성취가 군집의 특성을 구분하는 중요한 요인으로 작용하고 있었다. 따라서 평가 자료를 활용해 학생을 군집화한 후, 이러한 군집별 특성을 바탕으로 학생들에게 학습을 위한 맞춤형 피드백을 제공할 수 있을 것으로 판단된다. 본 연구에서는 이러한 연구 결과를 바탕으로 군집분석 연구결과 활용의 가능성, 내용 영역별 균형 있는 학습, 교과 역량 증진, 과학적 태도의 향상 등 과학교육의 시사점을 제안하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0