메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최지석 (국립한경대학교) 이정근 (국립한경대학교)
저널정보
제어로봇시스템학회 제어로봇시스템학회 논문지 제어로봇시스템학회 논문지 제28권 제12호
발행연도
2022.12
수록면
1,216 - 1,223 (8page)
DOI
10.5302/J.ICROS.2022.22.0127

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (6)

초록· 키워드

오류제보하기
The estimation of 3D orientation based on nine-axis inertial measurement unit (IMU) is an essential technology in various applications, from unmanned aerial vehicle to human motion tracking. Various sensor fusion filter algorithms such as Kalman filter (KF) or complementary filter (CF) have been proposed for accurate 3D orientation estimation. However, the degradation of estimation performance due to disturbance components such as magnetic distortion and external acceleration is still a critical issue. An alternative approach for the orientation estimation task is to train a neural network end-to-end with a variety of massive experimental datasets consisting of the raw IMU signals and the ground truth orientations. This paper proposes a recurrent neural network (RNN) for robust IMU-based 3D orientation estimation. Overall, this paper is an extension of the previous work by Weber et al., where the RNN model was used to estimate the quaternion, but only the attitude estimation performance was investigated without considering the heading estimation. The proposed RNN receives a nine-dimensional sensor signal as an input and outputs a unit quaternion representing 3D orientation, and it can robustly estimate the orientation across various motion characteristics and magnetic environments without needing an additional filter algorithm. Verification results showed that the proposed method outperformed the conventional CF and KF algorithms. In particular, in magnetically disturbed conditions, the averaged root mean square error of the proposed RNN approach was reduced by 41.4% and 60.3%, respectively, when compared to the CF and the KF algorithm.

목차

Abstract
Ⅰ. 서론
Ⅱ. 방법
Ⅲ. 실험 및 데이터 처리
Ⅳ. 결과 및 고찰
Ⅴ. 결론
REFERENCES

참고문헌 (33)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0