메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2020
발행연도
2020.10
수록면
856 - 859 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study introduces intelligent task robot system based on process recipe extraction from standard 3D model files. In small quantity batch production and mixed flow manufacturing condition, lots of time is spent on process planning and device control such as path planning in a robot system. If these processes could be automated, mixed flow production of various products will be working efficiently. This paper suggests automated process recipe extraction module based product registration subsystem and visual servoing based intelligent assembly task robot subsystem. The recipe module extracts list of parts, each part size and position from standard 3D model file (STEP) and analyzes the structure of product between parts. The extracted product data is stored in the recipe knowledge base as a recipe format and also plan-view image of each part. Robot system consists of real-time part recognition module, part scheduling module and motion planner module. The part recognition module identifies parts by matching real-time RGB image and plan-view image in knowledge base. The part scheduling module plan the sequence of part for task using a decision tree method. The motion planner module controls assembly task robot according to process recipe depending on task type. Performance of the system was tested with five types of sample products.

목차

Abstract
1. INTRODUCTION
2. SYSTEM CONFIGURATION
3. EXPERIMENTAL SETUP
5. CONCLUDING REMARKS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-003-001569418