메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Koutarou Yamashita (Waseda University) Fumiyo Ito (Waseda University) Kyosuke Hasumoto (Waseda University) Masayuki Goto (Waseda University)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.22 No.3
발행연도
2023.9
수록면
327 - 339 (13page)
DOI
10.7232/iems.2023.22.3.327

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Recently, a large number of cooking recipes have been posted and shared on the Internet. Various machine learning techniques have been proposed to analyze those recipes. Those include a method to discover alternative ingredients by obtaining distributed representations from cooking procedures and ingredient names, or a method to extract basic procedures from common features in cooking procedures. Such methods utilize the constructed semantic space to calculate the distances among cooking procedures and ingredients for recipes, and demonstrate effectiveness by evaluating similarity of recipes. Using a similar semantic space, we can analyze not only the similarities among recipes but also their diversity. Even for the same dish name, there could be a variety of recipes, depending on the contributor. The diversity of recipes varies from dish to dish. By taking this diversity into account, it is possible to perform various analyses such as extracting recipes that are suitable for each user. In this study, we propose a method to analyze the diversity of recipes using distributed representation. In addition, we apply the proposed method to the posted data on an actual recipe site and show its usefulness.

목차

ABSTRACT
1. INTRODUCTION
2. PREPARATION
3. PROPOSED MODEL
4. ACTUAL DATA ANALYSIS
5. DISCUSSION AND CONCLUSION
6. CONCLUSION AND FUTURE WORK
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0