메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국수학교육학회 수학교육 수학교육 제58권 제1호
발행연도
2019.1
수록면
1 - 20 (20page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
As the importance of algebraic thinking in elementary school has been emphasized, the links between fraction knowledge and algebraic thinking have been highlighted. In this study, we analyzed the solution methods and characteristics of thinking by fifth graders who have not yet learned fraction division when they solved ‘reverse fraction problems’ (Pearn & Stephens, 2018). In doing so, the contexts of problems were extended from the prior study to include the following cases: (a) the partial quantity with a natural number is discrete or continuous; (b) the partial quantity is a natural number or a fraction; (c) the equivalent fraction of partial quantity is a proper fraction or an improper fraction; and (d) the diagram is presented or not. The analytic framework was elaborated to look closely at students’ solution methods according to the different contexts of problems. The most prevalent method students used was a multiplicative method by which students divided the partial quantity by the numerator of the given fraction and then multiplied it by the denominator. Some students were able to use a multiplicative method regardless of the given problem contexts. The results of this study showed that students were able to understand equivalence, transform using equivalence, and use generalizable methods. This study is expected to highlight the close connection between fraction and algebraic thinking, and to suggest implications for developing algebraic thinking when to deal with fraction operations.

목차

등록된 정보가 없습니다.

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0