메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Joonkoo Kim (Chung-Ang University) Kyuyun Lim (University of British Columbia)
저널정보
한국영어학회 영어학 영어학 Volume.19 Number.3
발행연도
2019.9
수록면
452 - 474 (23page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The purpose of the present study is to identify the corpus-based differences between Koreans’ English writings and their corresponding Google translations. For this purpose, the present study utilized Coh-Metrix 3.0 and conducted comparative analyses on two types of writings in terms of 12 benchmarks of text analysis. Coh-Metrix 3.0 provided numeric values for the following selected categories of text analysis: (a) basic counts (i.e., DESSC, DESWC, and DESSL), (b) lexical aspects (i.e., WRDFRQc and LDTTRc), (c) readability (i.e., RDFRE and RDFKGL) (d) syntactic complexity (i.e., SYNLE, SYNNP, and SYNSTRUTa), and (e) cohesion (i.e., CRAFAOa and LSASS1). Each output for 5 categories computed by Coh-Metrix 3.0 was then statistically processed in order to find statistically significant differences. The quantitative findings, given the small sample size associated with lower statistical power and non-normality of some data sets, were interpreted together with results from a robust technique of bootstrapped independent t-tests since the employment of bootstrapping has been empirically justified in the field of applied linguistics (Plonsky 2013, 2014). The overall findings indicated that Google translations tend to produce significantly more words before main verbs and longer sentences compared to human writings. Furthermore, it was also found that Google translations were significantly less readable, but more cohesive. However, there were no significant differences observed in lexical aspects.

목차

1. Introduction
2. Literature Review
3. Methods
4. Results and Discussion
5. Conclusion
References

참고문헌 (45)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-705-001240201