메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국경제통상학회 경제연구 경제연구 제34권 제2호
발행연도
2016.1
수록면
173 - 205 (33page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
For the KOSPI200 Index (“Index”), a well-known negative and statistically significant relationship exists between the returns of the Index and VKOSPI, the official model-free implied volatility index. Our primary research purpose is to test VKOSPI as an informative and meaningful trading indicator and to develop a set of algorithmic trading strategies to time the market. To further exploit VKOSPI as a trading indicator in relation to forward looking index returns, it is decomposed into a model-based conditionally forecasted volatility and a residual part. The discrepancy between the realized VKOSPI and the model-forecast is subsequently called VKOSPI Spread (the “Spread”). Both long and short positions triggered by large Spread and the trading strategies are evaluated in terms of their ability to outperform the index benchmark in falling, rising and steady risk aversion regimes. There is some empirical evidence for expecting opportunities for positive future excess and risk-adjusted returns for long and short positions triggered by large movements in the Spread. This finding is more prominent during the periods of both rising and steady risk aversions. Trading strategy is tested on the data period from Jan 2, 2003 to May 29, 2015. The time-varying return-volatility relation is used to implement a set of dynamic asset allocation strategies by analyzing Spread with its corresponding Index. With asymmetric volatility phenomenon in the Korean stock market, some of the selected benchmark-outperforming dynamic asset allocation strategies are effectively developed by processing meaningful signals from Spread on the Index Futures.

목차

등록된 정보가 없습니다.

참고문헌 (26)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0