메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper, a simplified Cubature Kalman Filter (SCKF) is proposed to reduce the computation load of CKF, which is then used as a filter for transfer alignment of shipboard INS. CKF is an approximate Bayesian filter that can be applied to nonlinear systems. When an initial estimation error is large, convergence characteristic of the CKF is more stable than that of the Extended Kalman Filter (EKF), and the reliability of the filter operation is more ensured than that of the Unscented Kalman Filter (UKF). However, when a system degree is large, the computation amount of CKF is also increased significantly, becoming a burden on real-time implementation in embedded systems. A simplified CKF is proposed to address this problem. This filter is applied to shipboard inertial navigation system (INS) transfer alignment. In the filter design for transfer alignment, measurement type and measurement update rate should be determined first, and if an application target is a ship, lever-arm problem, flexure of the hull, and asynchronous time problem between Master Inertial Navigation System (MINS) and Slave Inertial Navigation System (SINS) should be taken into consideration. In this paper, a transfer alignment filter based on SCKF is designed by considering these problems, and its performance is validated based on simulations.

목차

등록된 정보가 없습니다.

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0