메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이종민 (한국과학기술원) 홍정표 (한국과학기술원) 박재영 (한국과학기술원) 이강훈 (한국과학기술원) 김기응 (한국과학기술원) 문일철 (한국과학기술원) 박재현 (국방과학연구소)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회 컴퓨팅의 실제 논문지 정보과학회 컴퓨팅의 실제 논문지 제23권 제6호
발행연도
2017.6
수록면
343 - 349 (7page)
DOI
10.5626/KTCP.2017.23.6.343

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
대규모 가상군의 전투 모델링 및 시뮬레이션에서 자율적으로 행동하는 이성적 전투 개체의 행동 묘사는 향후 발생할 전투의 작전을 고도화하고 효율적인 모의 훈련을 가능하게 하는 핵심 요소이다. DEVS-POMDP 계층적 프레임워크는 전투 행동 교범에 따른 상위 단계 의사결정 및 구체적 서술이 어려운 하위 단계 자율 행동계획을 각각 DEVS 및 POMDP로 모델링함으로써 대규모 가상군을 모의하였으나, POMDP 최적 행동정책 계산에 있어서 많은 컴퓨팅 자원을 필요로 하는 단점이 있었다. 본 논문에서는 DEVS-POMDP로 모델링된 대화력전 모의 시나리오 및 기계화 보병여단 공격작전 모의 시나리오의 사례연구를 통해 효율적인 POMDP 트리 탐색 알고리즘을 제안하고 적군 행동 양상 모델의 학습을 통한 가상군 전투 개체의 성능 향상을 확인한다.

목차

요약
Abstract
1. 서론
2. 대화력전 모의 시나리오
3. 기계화 보병여단 공격작전 모의 시나리오
4. 결론 및 향후 연구계획
References

참고문헌 (7)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0