메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Thomas Fridolin Iversen (University of Southern Denmark) Lars-Peter Ellekilde (University of Southern Denmark) Jaime Valls Miró (University of Technology Sydney)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2017
발행연도
2017.10
수록면
921 - 928 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Doing motion planning for bin-picking with object uncertainties requires either a re-grasp of picked objects or an online sensor system. Using the latter is advantageous in terms of computational time, as no time is wasted doing an extra pick and place action. It does, however, put extra requirements on the motion planner, as the target position may change on-the-fly.
This paper solves that problem by using a state adjusting Partial Observable Markov Decision Process, where the state space is modified between runs, to better fit earlier solved problems. The approach relies on a set of waypoints, containing information about which parts of the state space may contain feasible solutions. Waypoints are pushed around the state space by observing which states in the neighborhood lead to successfully solved problems.
Two bin-picking scenarios are modeled with the proposed method. One scenario in which the system receives an object pose update while moving towards the place position. Another where the update includes the object type being grasped out of a fixed number of options, each class to be deposited in a different place. When an online POMDP solver is utilized, the state adjusting POMDP is improving performance by up to 28% on execution times compared to a not adjusted POMDP.

목차

Abstract
1. INTRODUCTION
2. RELATED WORK
3. POMDP PRELIMINARIES
4. PROPOSED METHOD
5. TEST SETUP
6. RESULTS
7. DISCUSSION
8. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-003-001427294