메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국경영과학회 한국경영과학회지 한국경영과학회지 제29권 제2호
발행연도
2004.6
수록면
45 - 57 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The purpose of this paper is studying the valuation of option prices in incomplete markets. A market is said to be incomplete if the given traded assets are insufficient to hedge a contingent claim. This situation occurs, for example, when the underlying stock process follows jump-diffusion processes. Due to the jump part, it is impossible to construct a hedging portfolio with stocks and riskless assets. Contrary to the case of a complete market in which only one equivalent martingale measure exists, there are infinite numbers of equivalent martingale measures in an incomplete market. Our research here is focusing on risk minimizing hedging strategy and its associated minimal martingale measure under the jump-diffusion processes. Based on this risk minimizing hedging strategy, we characterize the dynamics of a risky asset and derive the valuation formula for an option price. The main contribution of this paper is to obtain an analytical formula for a European option price under the jump-diffusion processes using the minimal martingale measure.

목차

Abstract

1. Introduction

2. Framework for Valuation in Incomplete Markets

3. Analytical Formula for a European option price under minimal martingale measure

4. Concluding Remarks

References

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-325-014099851