메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Yuseung Jo (Chonnam National University) Hyoung Il Son (Chonnam National University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2024
발행연도
2024.10
수록면
1,480 - 1,483 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In a wide, dense, and unstructured agricultural environment, the deployment of autonomous mobile robots is an attractive option. In such the environment, large robot systems are subject to physical limitations such as communication distance and sensor measurements. This limitation is solved effectively with distributed path planning and coordination. A graph neural networks (GNNs) are an effective approach for efficient communication of multi-robot systems. In this paper, we propose a GNN-based decentralized path planning framework for agricultural robot team. The proposed model used a graph neural network for responsiveness to dynamic environmental changes, scalability, and efficient local information exchange among the adjacent agents. A graph neural network takes as input the observable features (e.g., states, subgoal, obstacle) of each agent for a partial observation scenario. As the action policy to predict the behavior of the agents, the model trained the tradition optimal multi-agent pathfinding algorithm, conflict-based search algorithm. Through the simulation-based validation, the model was confirmed to have performance comparable to existing expert algorithms, responsiveness to dynamic environments, and scalability.

목차

Abstract
1. INTRODUCTION
2. GNN-BASED PATH PLANNING FRAMEWORK
3. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0