메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Kim Keun Ju (Department of Laboratory Medicine, Korea University College of Medicine, Seoul, Korea.) Yun Seung Gyu (Department of Laboratory Medicine, Korea University College of Medicine, Seoul, Korea.) Cho Yunjung (Department of Laboratory Medicine, Korea University College of Medicine, Seoul, Korea.) Lee Chang Kyu (Department of Laboratory Medicine, Korea University College of Medicine, Seoul, Korea.) Nam Myung-Hyun (Department of Laboratory Medicine, Korea University College of Medicine, Seoul, Korea.)
저널정보
대한의학회 Journal of Korean Medical Science Journal of Korean Medical Science Vol.39 No.17
발행연도
2024.5
수록면
1 - 8 (8page)
DOI
10.3346/jkms.2024.39.e157

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study assessed the performance of the BioFire Blood Culture Identification 2 (BCID2) panel in identifying microorganisms and antimicrobial resistance (AMR) profiles in positive blood cultures (BCs) and its influence on turnaround time (TAT) compared with conventional culture methods. We obtained 117 positive BCs, of these, 102 (87.2%) were correctly identified using BCID2. The discordance was due to off-panel pathogens detected by culture (n = 13), and additional pathogens identified by BCID2 (n = 2). On-panel pathogen concordance between the conventional culture and BCID2 methods was 98.1% (102/104). The conventional method detected 19 carbapenemase-producing organisms, 14 extendedspectrum beta-lactamase-producing Enterobacterales, 18 methicillin-resistant Staphylococcus spp., and four vancomycin-resistant Enterococcus faecium. BCID2 correctly predicted 53 (96.4%) of 55 phenotypic resistance patterns by detecting AMR genes. The TAT for BCID2 was significantly lower than that for the conventional method. BCID2 rapidly identifies pathogens and AMR genes in positive BCs.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0