메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Georgios Feretzakis (Hellenic Open University) Aikaterini Sakagianni (Sismanogleio General Hospital) Evangelos Loupelis (Sismanogleio General Hospital) Dimitris Kalles (Hellenic Open University) Nikoletta Skarmoutsou (Sismanogleio General Hospital) Maria Martsoukou (Sismanogleio General Hospital) Constantinos Christopoulos (Sismanogleio General Hospital) Malvina Lada (Sismanogleio General Hospital) Stavroula Petropoulou (Sismanogleio General Hospital) Aikaterini Velentza (Sismanogleio General Hospital) Sophia Michelidou (Sismanogleio General Hospital) Rea Chatzikyriakou (Sismanogleio General Hospital) Evangelos Dimitrellos (Sismanogleio General Hospital)
저널정보
대한의료정보학회 Healthcare Informatics Research Healthcare Informatics Research 제27권 제3호
발행연도
2021.1
수록면
214 - 221 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives: In the era of increasing antimicrobial resistance, the need for early identification and prompt treatment of multi-drug-resistant infections is crucial for achieving favorable outcomes in critically ill patients. As traditional microbiological susceptibility testing requires at least 24 hours, automated machine learning (AutoML) techniques could be used as clinical decision support tools to predict antimicrobial resistance and select appropriate empirical antibiotic treatment. Methods: An antimicrobial susceptibility dataset of 11,496 instances from 499 patients admitted to the internal medicine wards of a public hospital in Greece was processed by using Microsoft Azure AutoML to evaluate antibiotic susceptibility predictions using patients’ simple demographic characteristics, as well as previous antibiotic susceptibility testing, without any concomitant clinical data. Furthermore, the balanced dataset was also processed using the same procedure. The datasets contained the attributes of sex, age, sample type, Gram stain, 44 antimicrobial substances, and the antibiotic susceptibility results. Results: The stack ensemble technique achieved the best results in the original and balanced dataset with an area under the curve-weighted metric of 0.822 and 0.850, respectively. Conclusions: Implementation of AutoML for antimicrobial susceptibility data can provide clinicians useful information regarding possible antibiotic resistance and aid them in selecting appropriate empirical antibiotic therapy by taking into consideration the local antimicrobial resistance ecosystem.

목차

등록된 정보가 없습니다.

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0