메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정상규 (Chungbuk National Univ.) 이태호 (National Institute of Ecology)
저널정보
한국생태환경건축학회 KIEAE Journal KIEAE Journal Vol.24 No.5(Wn.129)
발행연도
2024.10
수록면
53 - 59 (7page)
DOI
10.12813/kieae.2024.24.5.053

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Purpose: This study aims to analyze park-relatred complaints posted on social media using artificial intelligence (AI)-based natural language processing (NLP) technology to identify the characteristics of these complaints from the perspective of ecosystem services. Method: In this study, Python programming language and its supporting packages were utilized to scrape park-related complaint data registered on social media from July 1, 2023, to June 30, 2024, extracting the words that comprise the complaints. Using AI-based NLP techniques, specifically TF-IDF and K-means clustering algorithms, the importance of the extracted words was calculated and clustered. Additionally, the service support elements of parks inferred from the extracted words were classified into gray infrastructure and green infrastructure, and the characteristics of the complaints were quantified from the perspective of ecosystem services. Result: Complaints related to national parks and urban parks were strongly raised, particularly focusing on park management and infrastructure installation. Using AI to categorize words related to infrastructure into gray and green infrastructure, it was found that most complaints were concentrated on gray infrastructure, such as parking lots and restrooms. Complaints about green infrastructure were relatively few, with some even opposing ecosystem conservation and management. This was interpreted as a result of the public's lack of understanding and interest in the ecosystem services provided by parks.

목차

ABSTRACT
1. 서론
2. 이론적 고찰
3. 연구 방법
4. 공원 관련 민원 특성
5. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-151-25-02-091046328