메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Jung Hyun Min (College of Pharmacy, Chung-Ang University) Kim Chang Hyun (College of Pharmacy, Chung-Ang University) Seo Jo-Eun (College of Pharmacy, Chung-Ang University) Goo Yoon Tae (College of Pharmacy, Chung‐Ang University Seoul 06974 Republic of Korea) Hong Sun Ho (College of Pharmacy, Chung-Ang University) Kang Myung Joo (College of Pharmacy, Dankook University) 이상길 (중앙대학교) 최영욱 (중앙대학교)
저널정보
한국약제학회 Journal of Pharmaceutical Investigation Journal of Pharmaceutical Investigation Vol.54 No.1
발행연도
2024.1
수록면
61 - 75 (15page)
DOI
10.1007/s40005-023-00645-8

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose We developed a core–shell (CS) nanoparticle, docetaxel (DTX)-loaded core and tariquidar (TRQ)-loaded shell conjugated with PEG and RIPL peptide (D/C-T/S-PR), which sequentially releases TRQ and DTX to overcome multidrug resistant (MDR) cancer. Methods D/C-T/S-PR was fabricated by two-step method, including the formation of a DTX-loaded nanostructured lipid carrier (D/NLC) core by solvent emulsification-evaporation and a TRQ-loaded lipid bilayer shell using a film hydration method. CSs with a lipid mass ratio of shell to core from 1 to 5 (CS1–CS5) were prepared and purified by sucrose density gradient centrifugation. The physicochemical properties of the CSs were evaluated to select an optimal ratio. Additionally, CS formation was confirmed by transmission microscopy (TEM) and confocal laser scanning microscope (CLSM) images. In vitro drug release was evaluated and in vitro cellular uptake and cytotoxicity were assessed against MCF7 and MCF7/ADR cells. Results The amounts of CSs acquired after purification were increased with increasing lipid ratio. CS3 was selected as the final formulation due to its high drug loading. Using TEM, we observed the distinct formation of the shell coating the core in the D/C-T/S-PR, while CLSM was used to confirm the co-loading of two fluorescent probes in different layers. D/C-T/SPR showed a burst release of TRQ from the shell, followed by sustained release of DTX from the core. D/C-T/S-PR showed enhanced uptake and cytotoxicity in both cell types. Conclusion We successfully developed a CS exhibiting sequential release of TRQ and DTX, which may represent a promising strategy to overcome MDR.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

최근 본 자료

전체보기

댓글(0)

0