메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김윤식 (동국대학교) 양병윤 (동국대학교)
저널정보
한국지도학회 한국지도학회지 한국지도학회지 제23권 제1호
발행연도
2023.4
수록면
67 - 77 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
2020년 이후 코로나-19로 인해 전 세계적으로 다양한 사회・경제적 문제가 발생하였고, 이로 인해 비대면 문화와 소셜 네트워크 서비스(SNS)를 통한 활동이 급격히 늘어났다. SNS 데이터는 저비용으로 많은 양의 데이터를 확보할 수 있으며, 다양한 정보를 포함하고 있어 도시 계획 및 운영에 활용될 수 있다. 이에 따라, 새로운 방법의 적용이 필요해졌고, 최근 발전한 인공지능 기술을 활용하여 공간 유형의 변화를 설명하는 것이 가능해졌다. 이를 위해 머신러닝 군집화 방법을 사용하여 관광지 분포 패턴 및 도시 관심 지역을 추출할 수 있게 되었다. 기존에는 군집화를 위해 K-means, DBSCAN을 활용해 왔으나. HDBSCAN에 대한 국내 연구 활용 사례는 부족한 상황이다. 따라서, 본 연구는 2019년과 2020년의 서울시 플리커 데이터와 HDBSCAN을 활용하여 도시 관심 지역에 대한 공간 유형의 변화를 설명하고자 하였다. 본 연구에서는 HDBSCAN 방법을 이용하여 플리커 게시물을 군집화하고 도시 관심 지역을 도출하였으며, 실루엣 점수를 통해 각 군집에 대한 군집화 정도를 점수화하였다. 연구 결과, 실제 서울 시내의 도심 및 부도심 등 주요 지점을 따라 군집이 도출되었고, 실루엣 점수를 활용한 평가 결과 군집화 정도가 통계적으로 유의미한 수준으로 계산되었다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0