메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Cameron Wright Pietari Mäkelä Alexandre Bigot (Profound Medical Corp) Mikael Anttinen (University of Turku and Turku University Hospital) Peter J. Boström (University of Turku and Turku University Hospital) Roberto Blanco Sequeiros (University of Turku and Turku University Hospital)
저널정보
대한의용생체공학회 Biomedical Engineering Letters (BMEL) Biomedical Engineering Letters (BMEL) Vol.13 No.1
발행연도
2023.2
수록면
31 - 40 (10page)
DOI
https://doi.org/10.1007/s13534-022-00250-y

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The non-perfused volume (NPV) is an important indicator of treatment success immediately after prostate ablation. However, visualization of the NPV first requires an injection of MRI contrast agents into the bloodstream, which has many downsides. Purpose of this study was to develop a deep learning model capable of predicting the NPV immediately after prostate ablation therapy without the need for MRI contrast agents. A modified 2D deep learning UNet model was developed to predict the post-treatment NPV. MRI imaging data from 95 patients who had previously undergone prostate ablation therapy for treatment of localized prostate cancer were used to train, validate, and test the model. Model inputs were T1/T2-weighted and thermometry MRI images, which were always acquired without any MRI contrast agents and prior to the final NPV image on treatment-day. Model output was the predicted NPV. Model accuracy was assessed using the Dice-Similarity Coefficient (DSC) by comparing the predicted to ground truth NPV. A radiologist also performed a qualitative assessment of NPV. Mean (std) DSC score for predicted NPV was 85% ± 8.1% compared to ground truth. Model performance was significantly better for slices with larger prostate radii (> 24 mm) and for whole-gland rather than partial ablation slices. The predicted NPV was indistinguishable from ground truth for 31% of images. Feasibility of predicting NPV using a UNet model without MRI contrast agents was clearly established. If developed further, this could improve patient treatment outcomes and could obviate the need for contrast agents altogether. Trial Registration Numbers Three studies were used to populate the data: NCT02766543, NCT03814252 and NCT03350529.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0