메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김수연 (1Department of Radiology, Seoul National University Hospital, Seoul, Korea 2Department of Radiology) 조나리야 (1Department of Radiology, Seoul National University Hospital, Seoul, Korea 2Department of Radiology)
저널정보
한국유방암학회 Journal of Breast Cancer Journal of Breast Cancer Vol.25 No.4
발행연도
2022.8
수록면
263 - 277 (15page)
DOI
10.4048/jbc.2022.25.e35

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Despite the high sensitivity and widespread use of preoperative magnetic resonance imaging (MRI), the American Cancer Society and the National Comprehensive Cancer Network guidelines do not recommend the routine use of preoperative MRI owing to the conflicting results and lack of clear benefit to the surgical outcome (reoperation and mastectomy) and long-term clinical outcomes (local recurrence and metachronous contralateral breast cancer). Preoperative MRI detects additional cancers that are occult at mammography and ultrasound but increases the rate of mastectomy. Concerns about overdiagnosis and overtreatment of preoperative MRI might be mitigated by adjusting the confounding factors when conducting studies, using the state-of-the-art image-guided biopsy technique, applying the radiologists’ cumulative experiences in interpreting MRI findings, and performing multiple lumpectomies in patients with multicentric cancer. Among the various imaging methods, dynamic contrast-enhanced MRI has the highest accuracy in predicting pathologic complete response after neoadjuvant chemotherapy. Prospective trials aimed at applying the MRI information to the de-escalation of surgical or radiation treatments are underway. In this review, current studies on the clinical outcomes of preoperative breast MRI are updated, and circumstances in which MRI may be useful for surgical planning are discussed.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0