메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
서동우 (동의대학교) 오윤경 (동의대학교)
저널정보
한국주거환경학회 주거환경 住居環境 통권 제21권 제1호 (통권 제59호)
발행연도
2023.3
수록면
153 - 168 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
This study has analyzed the characteristics of housing purchase burden by housing type in Busan, using house affordability index(HAI). This study"s time scope is from January 2012 to December 2021, and the spatial scope selected four metropolitan areas: Busan, Ulsan, Seoul, Incheon. The research method and empirical analysis results are as follows.
First, after calculating HAI among three housing types (apartment, multi-family house, and single-family house), this study conducted a one-way ANOVA to compare the results at the level of metropolitan areas. The results showed that the purchase burden of apartments was in the order of Seoul, Busan, Incheon, and Ulsan, whereas that of multi-family houses was in the order of Seoul, Busan, Ulsan, and Incheon. Finally, the purchase burden of single-family houses was in the order of Seoul, Ulsan, Busan, and Incheon.
Second, spatial autocorrelation analysis was conducted using Busan’s HAI data for all housing types in 2021. The test results from Moran"s I showed that HAI of apartments and single-family houses had similar spatial autocorrelation level compared with those of surrounding area, whereas HAI and PIR of multi-family houses showed contrasting spatial autocorrelation level with those of surrounding area.
Third, the results of LISA showed that Dongnae-gu and Suyeong-gu were the H-H areas (Hot Spot) for apartments. In contrast, Seo-gu and Dong-gu were the L-L areas (Cold Spot) for multi-family houses. For single-family houses, Jung-gu, Seo-gu, and Dong-gu were the L-L area, whereas Dongnae-gu, Haewoondae-gu, Yeonje-gu, and Suyeong-gu were the H-H area.

목차

Abstract
Ⅰ. 서론
Ⅱ. 선행연구 및 차별성
Ⅲ. 분석모형
Ⅳ. 실증 분석
Ⅴ. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2023-595-001361486