메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Jessie Chen-Yu (Virginia Tech) Jihyun Kim (Kent State University) Hsiao-Ling Lin (Virginia Tech)
저널정보
한국마케팅과학회 Journal of Global Fashion Marketing Journal of Global Fashion Marketing 제8권 제3호
발행연도
2017.6
수록면
207 - 219 (13page)
DOI
https://doi.org/10.1080/20932685.2017.1298460

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study investigates the antecedents of satisfaction with the product and satisfaction with the brand of consumers when they have received the garment ordered online and tried it on for the first time. We propose four antecedents of product satisfaction and brand satisfaction: (a) brand-based product expectation at purchase, (b) perceived product performance at product receipt,(c) website-visible-attribute expectancy disconfirmation (discrepancy between product expectation and perceived performance of the product attributes that are visible on the website, such as style and color), and (d) website-invisible-attribute expectancy disconfirmation (discrepancy between product expectation and perceived performance of the product attributes that may not be distinguishable on the website, such as fabric, fit, and workmanship). The research design was a 2 (levels of brand-based product expectation) x 2 (levels of perceived product performance) factorial experimental design. We developed two mock-up apparel retailer web pages for the data collection, and 120 participants provided usable responses. The findings revealed that brand-based product expectation and product performance did not influence product or brand satisfaction. Both types of expectancy disconfirmation were determinants of product satisfaction; however, only website-visible-attribute expectancy disconfirmation was the antecedent of brand satisfaction. Based on the findings, theoretical and pragmatic implications are presented.

목차

등록된 정보가 없습니다.

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0