메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Yang Kai (Jing'an District Central Hospital) Tang Yulong (Fudan University) Ma Yanyun (Fudan University) Liu Qingmei (Fudan University) Huang Yan (Fudan University) Zhang Yuting (Fudan University) Shi Xiangguang (Fudan University) Zhang Li (Jing'an District Central Hospital) Zhang Yue (Fudan University) Ji’an Wang (Fudan University) Zhu Yifei (Fudan University) Liu Wei (General Hospital of Air Force) Tan Yimei (Shanghai Skin Disease Hospital) Lin Jinran (Fudan University) Wu Wenyu (Jing'an District Central Hospital)
저널정보
대한피부과학회 Annals of Dermatology Annals of Dermatology 제33권 제6호
발행연도
2021.12
수록면
553 - 561 (9page)
DOI
10.5021/ad.2021.33.6.553

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background: Androgenetic alopecia (AGA) leads to thinning of scalp hair and affects 60%~70% of the adult population worldwide. Developing more effective treatments and studying its mechanism are of great significance. Previous clinical studies have revealed that hair growth is stimulated by 650-nm red light. Objective: This study aimed to explore the effect and mechanism of 650-nm red light on the treatment of AGA by using hair follicle culture. Methods: Human hair follicles were obtained from hair transplant patients with AGA. Hair follicles were cultured in Williams E medium and treated with or without 650-nm red light. Real-time RT-PCR and immunofluorescence staining were used to detect the expression level of genes and proteins in hair follicles, respectively. RNA-sequencing analysis was carried out to reveal the distinct gene signatures upon 650 nm treatment. Results: Low-level 650 nm red light promoted the proliferation of human hair follicles in the experimental cultured-tissue model. Consistently, 650 nm red light significantly delayed the transition of hair cycle from anagen to catagen . RNA-seq analysis and gene cluster- ing for the differentially expressed genes suggests that leukocyte transendothelial migration, metabolism, adherens junction and other biological process maybe involved in stimulation of hair follicles by 650-nm red light treatment. Conclusion: The effect of 650-nm red light on hair follicles and the transcriptome set which implicates the role of red light in promoting hair growth and reversing of miniaturiza- tion process of AGA were identified.

목차

등록된 정보가 없습니다.

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0