메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
마정연 (Korea University) 이상근 (고려대학교)
저널정보
한국영어학학회 영어학연구 영어학연구 제27권 제3호
발행연도
2021.12
수록면
1 - 20 (20page)
DOI
10.17960/ell.2021.27.3.001

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Polarity antonyms such as optimistic vs. pessimistic have been the center of debate in pragmatics since Horn (1989) brought up the so-called asymmetric effect: negating of a positive adjective, NOT optimistic, is generally perceived as its negative counterpart, pessimistic, but negating of a negative adjective, NOT pessimistic, is rarely interpreted as its positive counterpart, optimistic. This study examines how sensitive the two groups, native English speakers (NESs) and Korean EFL learners (KEFLs), are to this asymmetric effect. A couple of acceptability judgment tests were carried out to show, first, whether the two groups equally express the asymmetric effect for the polarity antonyms, and second, how the two groups respond to the additional factor of such negative affixes as un-, in(m)-, and ir- in the interpretation of negated polarity adjectives. The findings revealed that for the KEFLs, interestingly, the asymmetrical effect did not occur with the negated polarity adjectives, even though it did occur for the morphological factor. We attribute to the KEFLs’ lack of awareness of politeness the absence of the asymmetric effect in their interpretation of the negated polarity adjectives, while attributing the asymmetric effect for the morphological factor to the KEFLs’ processing difficulty in comprehension of the notorious double negative expressions like NOT un-happy. Interviews with the KEFLs were also provided for our explanation. The findings of this study contributes to the development of a more effective curriculum for learning and teaching English polarity antonyms.

목차

등록된 정보가 없습니다.

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0