메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
서혜심 (계명대학교) 여은아 (계명대학교)
저널정보
복식문화학회 복식문화연구 복식문화연구 제30권 제2호
발행연도
2022.4
수록면
297 - 318 (22page)
DOI
10.29049/rjcc.2022.30.2.297

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
A growing number of fashion brands and retailers are actively adopting live streaming as a new marketing channel. In spite of the increasing use of live commerce, the effects of live streaming commerce on customer purchasing behavior for fashion products are not fully understood. The purpose of this study is to examine factors affecting consumers’ attitudes toward a purchase via fashion live streaming commerce (FLSC) and intention to use FLSC. The study also investigated whether consumers’ expenditure on fashion and time spent on mobile shopping moderate the relationships among research variables. A total of 230 questionnaires were analyzed through descriptive statistics, confirmatory factor analysis, and multiple-group comparison tests using SPSS and AMOS. A summary of the main results of this study is as follows. First, the perception of the attributes of FLSC (ease of use, economic efficiency, interactivity, and enjoyment) has a positive effect on attitude toward a purchase via FLSC. The ease of use and economic efficiency of FLSC, in particular, have greater impacts on attitudes than other factors. Secondly, attitudes toward FLSC positively impact the intention to use FLSC. Lastly, the results of group comparisons, by fashion expenditure and time spent on mobile shopping respectively, hold no significant moderation effects among the variables. These findings demonstrate that consumers are more likely to use FLSC as they form a positive attitude by the attributes of FLSC mentioned earlier. The study provides some insights on an exploration of live streaming commerce for fashion product sales.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0