메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
곽정훈 (한국로봇융합연구원) 양견모 (한국로봇융합연구원) 구재완 (한국로봇융합연구원) 서갑호 (한국로봇융합연구원)
저널정보
제어로봇시스템학회 제어로봇시스템학회 논문지 제어로봇시스템학회 논문지 제28권 제12호
발행연도
2022.12
수록면
1,140 - 1,146 (7page)
DOI
10.5302/J.ICROS.2022.22.0181

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
AMR(Autonomous Mobile Robot) is being used to improve working environment through collaboration such as transporting goods between workers. For collaboration such as transporting goods, AMR tracks the workers and carries out goods transport. Object tracking is possible based on a deep learning model trained using big data, built as an object to be tracked. When the worker changes frequently, such as in a work environment, there is a problem in that big data construction and deep learning model learning are required whenever an object to be tracked is changed. There is a need for a method for tracking objects that change frequently while providing small amounts of data. This paper proposes a deep learning-based framework for tracking changeable object. An object to be tracked, such as a worker, is defined as a ToI (Target-of-Interest) object. The proposed framework utilizes a two-stage deep learning model to track a changeable ToI object. In the deep learning model of the first stage, an object of the same type as the ToI object is tracked. In the deep learning model of the second stage, the ToI object is found among the objects being tracked. The position of the ToI object is transformed into the coordinate system of the AMR so that the AMR can track the ToI object. In the experiment, the results of tracking the ToI object by using the proposed method were verified. When tracking ToI objects with a single-stage deep learning model with a small amount of data, the accuracy of tracking the ToI objects decreased according to the amount of data. In the case of the proposed method, the tracking of the ToI object was not affected by the amount of data.

목차

Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 변경 가능한 ToI 객체 추적하기 위한 딥러닝 프레임워크 개요
Ⅳ. 실험
Ⅴ. 결론
REFERENCES

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0