메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
오세운 (KwangWoon University) 이창현 (KwangWoon University) 김선목 (KwangWoon University) 임덕진 (Geumpoong) 이기백 (KwangWoon University)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제70권 제1호
발행연도
2021.1
수록면
168 - 175 (8page)
DOI
10.5370/KIEE.2021.70.1.168

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
In this paper, we propose a novel multi-object distinction method with class-agnostic object detection and class retreival. Multi-object distinction is usually divided into the processes of detecting and classifying an object. Since it is common for industrial applications to add new kinds of objects to be recognized, it is inefficient to re-train the system every time the new object is added. Thus, the propose method employs two deep learning models to solve this problem. 1) Class agnostic object detection model to predict the bounding boxes regardless of the classes of objects and 2) Class retrieval model to determine the classes of the objects. The experimental results show that the proposed method successfully detects and classifies the both experienced and inexperienced objects: the final classification accuracy for 15 learned objects was 98.0%, and for the other 30 new objects that had not been learned. the accuracy was 87.7% on average.

목차

Abstract
1. 서론
2. 본론
3. 실험 및 결과
4. 결론
References

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-560-001427393