메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김종현 (Kangnam University)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제27권 제7호(통권 제220호)
발행연도
2022.7
수록면
49 - 55 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 날씨와 같은 외부 환경요인에도 강건하게 동작할 수 있는 장애물 감지 기법을 제안한다. 특히, DB 기반의 특징 매칭과 RANSAC(RANdom SAample Consensus)기반의 다중 평면 방식을 통해 증강현실(Augmented Reality, AR)에서 정확하게 위험 상황을 알려줄 수 있는 장애물 감지 시스템을 제안한다. RGB카메라로부터 얻은 영상을 기반으로 장애물을 검출하는 접근법은 영상에 의존하기 때문에 조명에 따른 특징 검출이 부정확하고, 조명이나 자연광 또는 날씨의 영향을 받기 때문에 장애물 검출이 어려워진다. 또한, 복잡한 지형에서 생성되는 다수의 평면은 장애물을 감지하는데 있어서 오차가 커지는 원인이 된다. 이 문제를 완화하기 위해 본 논문에서는 DB기반의 특징 매칭을 통해 조명에 관계없이 장애물을 효율적이고 정확하게 감지한다. 또한, 다중 평면을 RANSAC을 통해 단일 평면으로 정규화하여 특징점을 분류하기 위한 기준을 새롭게 계산한다. 결과적으로 제안하는 방법은 조명, 자연광, 날씨에 관계없이 효율적으로 장애물을 감지할 수 있고, 높낮이나 다른 지형에서도 안정적으로 표면을 감지할 수 있기 때문에 사용자의 안전성 확보에 활용할 수 있을 거라 기대한다. 제안하는 방법은 모바일 디바이스에서 실험한 결과가 대부분 안정적으로 실내/외의 장애물들을 인지하였다.

목차

Abstract
요약
I. Introduction
II. Preliminaries
III. The Proposed Scheme
IV. Results
V. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0