메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
박정우 (강남대학교) 양홍주 (강남대학교) 문성혁 (강남대학교) 이나라힘 (강남대학교) 김종현 (강남대학교)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회 학술발표논문집 2021년 한국컴퓨터정보학회 하계학술대회 논문집 제29권 제2호
발행연도
2021.7
수록면
601 - 604 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 모바일 디바이스의 카메라로부터 얻은 RGB이미지를 분석하여 장애물을 안정적으로 탐지할 수 있는 프레임워크를 제안한다. 본 논문에서는 장애물을 안정적으로 찾기 위해 RANSAC(Random Sample Consensus)기반의 다중 평면 방식을 이용한 위험감지 시스템을 제안한다. 우리의 접근 방식은 RGB영상으로부터 특징점(Feature point)을 추출하고, 특징점을 분석(Feature point analysis)하여 영상내의 평면을 감지한다. 복잡한 지형으로 인해 생성되는 다수의 평면을 RANSAC을 통해 단일 평면으로 정규화하고, 이로부터 특징점을 분류하기 위한 기준점을 계산한다. 모바일 디바이스의 위치와 회전 제약 없이 효과적으로 기준평면(Reference plane)을 탐색할 수 있고, 영상 내 특징점을 실시간으로 계산한다. 다양한 실험을 통해 기준평면과 장애물과의 거리를 파악하여 장애물을 효과적으로 분류하는 결과를 얻었다. 우리의 기법은 실세계에서의 위험요소를 감지하고 모바일 디바이스 사용자의 안전성 확보에 활용할 수 있을 거라 기대한다.

목차

요약
I. Introduction
II. The Proposed Scheme
III. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2021-004-001909620