메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
최윤영 (한양사이버대학교) 서동기 (한림대학교)
저널정보
한국보건의료인국가시험원 Journal of Educational Evaluation for Health Professions Journal of Educational Evaluation for Health Professions Vol.17
발행연도
2020.1
수록면
1 - 7 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: The deterministic inputs, noisy “and” gate (DINA) model is a promising statistical method for providing useful diagnosticinformation about students’ level of achievement, as educators often want to receive diagnostic information on how examinees did oneach content strand, which is referred to as a diagnostic profile. The purpose of this paper was to classify examinees of the Korean Medical Licensing Examination (KMLE) in different content domains using the DINA model. Methods: This paper analyzed data from the KMLE, with 360 items and 3,259 examinees. An application study was conducted to estimate examinees’ parameters and item characteristics. The guessing and slipping parameters of each item were estimated, and statisticalanalysis was conducted using the DINA model. Results: The output table shows examples of some items that can be used to check item quality. The probabilities of mastery of eachcontent domain were also estimated, indicating the mastery profile of each examinee. The classification accuracy and consistency for 8content domains ranged from 0.849 to 0.972 and from 0.839 to 0.994, respectively. As a result, the classification reliability of the diagnostic classification model was very high for the 8 content domains of the KMLE. Conclusion: This mastery profile can provide useful diagnostic information for each examinee in terms of each content domain of theKMLE. Individual mastery profiles allow educators and examinees to understand which domain(s) should be improved in order tomaster all domains in the KMLE. In addition, all items showed reasonable results in terms of item parameters.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0