메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
서동기 (한림대학교) Jae Kum Kim (Korea International University in Ferghana)
저널정보
한국보건의료인국가시험원 Journal of Educational Evaluation for Health Professions Journal of Educational Evaluation for Health Professions 제18권
발행연도
2021.1
수록면
1 - 8 (8page)
DOI
https://doi.org/10.3352/jeehp.2021.18.15

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: Diagnostic classification models (DCMs) were developed to identify the mastery or non-mastery of the attributes required for solving test items, but their application has been limited to very low-level attributes, and the accuracy and consistency of high-level attributes using DCMs have rarely been reported compared with classical test theory (CTT) and item response theory models. This paper compared the accuracy of high-level attribute mastery between deterministic inputs, noisy “and” gate (DINA) and Rasch models, along with sub-scores based on CTT. Methods: First, a simulation study explored the effects of attribute length (number of items per attribute) and the correlations among attributes with respect to the accuracy of mastery. Second, a real-data study examined model and item fit and investigated the consistency of mastery for each attribute among the 3 models using the 2017 Korean Medical Licensing Examination with 360 items. Results: Accuracy of mastery increased with a higher number of items measuring each attribute across all conditions. The DINA model was more accurate than the CTT and Rasch models for attributes with high correlations (>0.5) and few items. In the real-data analysis, the DINA and Rasch models generally showed better item fits and appropriate model fit. The consistency of mastery between the Rasch and DINA models ranged from 0.541 to 0.633 and the correlations of person attribute scores between the Rasch and DINA models ranged from 0.579 to 0.786. Conclusion: Although all 3 models provide a mastery decision for each examinee, the individual mastery profile using the DINA model provides more accurate decisions for attributes with high correlations than the CTT and Rasch models. The DINA model can also be directly applied to tests with complex structures, unlike the CTT and Rasch models, and it provides different diagnostic information from the CTT and Rasch models.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0