메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김정한 (영남대학교) 김장회 (경상대학교) 최경희 (인제대학교)
저널정보
충북대학교 법학연구소 법학연구 법학연구 제30권 제1호
발행연도
2019.1
수록면
1 - 30 (30page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In Korea case, there is a case in which the computer can not grasp the characteristic of the automatically generated document, and it is dealt with as a documentary evidence. Computer automatically generated document has the appearance of a document but it is not an expression of a person's thoughts, so it is not documentary evidence but real evidence. For this reason, legality and authenticity are required as a requirement for admissibility, and hear say rule can not be applied. In addition, in judging the weight of the evidence, the relevance of the event is a problem, but the credibility is irrelevant. As the method of the evidence investigation, it consists of letters and signs, and its meaning is evidence, so reading and content notification should be a principled method just like documentary evidence. Sometimes, a general digital document and a computer automatically generated document exist together in one computer document. In this case, it is enough to treat the part of the general digital document as document evidence and the part of the computer automatically generated document as a real evidence. There are also many cases where a computer document is located between a general digital document and a computer automatically generated document. In this case, if the contents of the generated document are merely a summary or synthesis of the meanings of the characters or codes entered, it is regarded as a general digital document. If the entered characters or codes are not identical to the generated document, they are treated as computer automatically generated documents.

목차

등록된 정보가 없습니다.

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0